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4. Introduction  
 

Image processing systems are pervasive in every aspect of modern life. For example, many of us 

carry one (a cell phone) around on a daily basis. We use them not only to capture images of friends 

and family, but also to interact with the world, such as scanning QR codes to open web pages and 

services. 

Embedded vision-based systems extend even further, as they are being deployed in a range of 

applications including industrial robotics, automotive vision, and security and surveillance. 

Embedded vision often comes with additional requirements beyond image processing, including 

performance, power, security, and safety. 

For example, an industrial robot that operates in a shared environment may use embedded vision 

for navigation and safety, ensuring safe operation within the environment. In this application, the 

latency of the image processing needs to be low to ensure decisions—often powered by machine 

learning—can be made within a defined response time. Since these solutions are battery-powered, 

the image processing and overall solution must be power-efficient to ensure maximal operating life. 

Additionally, as the robot is operating in a safety-critical function, the embedded vision system must 

be safe and prevent unauthorized access and modification. 

In this white paper, we are going to explore what constitutes an image processing chain, the key 

elements within that chain, and the challenges it faces. This white paper will also examine how we 

can implement image processing chains using programmable logic within FPGAs and SoCs, 

leveraging existing IP cores (when possible) and model-based designs to accelerate the design flow.  

5. Image Processing Chain 

The image processing chain is the element of the design that interfaces with the image sensor or 
camera, and processes the received image into one suitable for its intended purpose. This may 
involve processing the image so it can be displayed, or formatting the image and storing it within a 
memory location, allowing higher-level algorithms to process the data. 

An image processing chain requires a significant level of processing in order to achieve this. 

The sensor or camera interface is at the start of the image processing chain. This interface is 
required to configure the sensor or camera for the desired mode of operation, which may include 
image resolution and frame rate. More advanced cameras may also support color space conversions 
or regions of interest. 

The output from the sensor or camera interface is a video stream. This video stream may require 
further processing, and the image processing pipeline will vary depending on whether the image 
data is in color or grayscale. However, stages of processing may include: 

• Dead Pixel Correction: Corrects dead pixels within the image stream. 
• Bias/Offset Correction: Removes the base electronic readout noise and inherent sensor 

offset. 
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• Dark Frame Subtraction: Removes thermal noise and fixed pattern noise from digital images 
by subtracting a dark frame (captured with the same exposure time but no light) from the 
target image. 

• Flat Field Correction: Compensates for uneven illumination and lens vignetting. 
• Demosaicing: Converts raw image data into colored pixels for RGB images. 
• White Balancing: Adjusts the color temperature to ensure neutral colors (especially whites) 

appear correct regardless of lighting conditions. 
• Gamma Correction: Adjusts the brightness and contrast of the image. 
• Color Space Conversion: Converts RGB to a different color space. 
• Edge Detection/Enhancement: Detects or enhances edges within an image. 
• Segmentation: Divides an image into distinct regions or segments. 
• Morphological Operations: Nonlinear operations based on the shape or morphology of 

features in an image. 

More advanced image processing stages may include algorithms, such as object and pattern 
recognition or classification. Many of these advanced processing stages often leverage machine 
learning or artificial intelligence techniques. 

Not all image processing chains use all of these stages. However, an image processing system will 
consist of one or more of these stages connected in series, as shown in the diagrams below. 
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Figure 1 – Example Greyscale image processing pipeline 

Each of these stages require operations on every pixel within the frame. However, some stages, such 
as sliding windowed filters to reduce noise or edge detection require operations on several pixels to 
determine a new pixel value, in this case the values of pixels surrounding the target pixel are taken 
into account to determine the new value. 
 
This makes the implementation of image processing applications computationally and memory 
intensive. Not only does each pixel require multiple operations, but the outputs of each stage also 
need to be buffered in memory. 
 
As frame rates and image resolutions increase, processing demands grow, while system bottlenecks 
around shared resources, such as system memory, can lead to latency issues. 
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6. Leveraging Programmable Logic 
Programmable logic, by its nature, is highly parallel, consisting of arrays of configurable logic blocks 

(CLBs) connected using a programmable routing network. 

This approach removes many of the system bottlenecks and ensures that the image processing 

pipeline is deterministic and low-latency. 

However, it is not only the logic structure that makes programmable logic well-suited for image 

processing applications. The I/O structures of programmable logic also enable flexible and 

straightforward interfacing with a wide range of image sensors and cameras. 

Interface 

Standard 

Type AMD FPGA 

Support 

Speed Implementation 

Notes 

MIPI CSI-2 D-PHY / C-PHY AMD 

Ultrascale+™ 

Devices: Native 

D-PHY; AMD 

Zynq™ 

Ultrascale+ 

MPSoCs: Native 

D-PHY; AMD 

Versal™ Adaptive 

SoCs: Native D-

PHY 

Up to 2.5 Gbps 

per lane (D-PHY 

v1.2) 

Direct PHY 

integration 

available in MPSoC 

devices 

SLVS/SLVS-EC Low Voltage 

Differential 

AMD Ultrascale+ 

Devices: HR IO 

banks; AMD 

Versal Adaptive 

SoCs: HR IO 

banks; AMD 7 

Series FPGAs: HR 

IO banks 

Up to 5 Gbps per 

lane 

 

SubLVDS Low Voltage 

Differential 

All FPGAs: HP & 

HR IO banks;  

Up to 1.5 Gbps  

CoaXPress High-speed Serial AMD Ultrascale+ 

Devices: 

GTH/GTY 

transceivers; 

AMD Versal 

Adaptive SoCs: 

GTY transceivers 

Up to 12.5 Gbps 

per link 

Requires specific 

CXP IP core 

Camera Link Parallel/Serial All FPGAs: HP & 

HR IO banks; 

Up to 850 MB/s 

(Base) 
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High-speed: 

GTX/GTH for HS 

mode 

GigE Vision Ethernet All FPGAs: 

GTP/GTH/GTX 

transceivers; 

Integrated MAC 

in some SoCs 

1/10/25 Gbps Uses standard 

Ethernet 

MAC/PHY 

implementation 

FPD-Link III High-speed Serial All FPGAs: 

GTP/GTH 

transceivers; 

Specific support 

in automotive 

parts 

Up to 12 Gbps Often used with TI 

deserializers 

Parallel 

CMOS/LVDS 

Parallel All FPGAs: HR IO 

banks; SelectIO 

interface 

Up to 1.2 Gbps 

per pin 

Direct connection 

to I/O banks 

 

By leveraging System-on-Chip (SoC) devices that combine programmable logic with high-

performance processors, such as the Arm® Cortex®-A9 Processor in the AMD Zynq™ 7000 SoC, the 

Arm Cortex-A53 in the AMD Zynq MPSoC, and the Arm Cortex-A72 in AMD Versal™ Adaptive SoCs, 

embedded vision developers can utilize the processor cores for tasks better suited to sequential 

processing, including: 

• Configuration of the image processing pipeline 

• Human-machine interfacing via displays and controls 

• Networking and communication 

• Higher-level decision-making leveraging AI and machine learning 

 

The ability to run embedded Linux on these processors allows developers to leverage higher-level 

frameworks such as OpenCV. These processing solutions can also take advantage of dedicated 

accelerators within the SoC to further increase performance. Examples include the Deep Learning 

Unit for accelerating AI/ML workflows when using Zynq MPSoC devices or AI Engines when working 

with Versal devices. 
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7. Image Processing Chains in Programmable Logic 
Implementing image processing chains within programmable logic may initially seem daunting, given 

the prospect of having to implement the image processing stages using an HDL such as VHDL or 

Verilog. 

However, by using the AMD Vivado™ Design Suite and the broader development environment of 

AMD Vitis™ software platforms, including Vitis HLS, Vitis Model Composer, Vitis Vision Libraries, and 

third-party tools such as MathWorks® MATLAB® and Simulink, it is possible to create comprehensive 

image processing chains while minimizing the need to develop custom HDL IP cores. 

What enables this modularity is the use of standardized interfaces for image processing (and many 

other) IP blocks. By using a standardized interface capable of transferring pixel data and timing 

markers necessary for reconstructing a two-dimensional image, developers can leverage a wide 

range of image processing IP from various sources. 

The Arm eXtensible Interface (AXI) Streaming (AXIS) interface is one of the most commonly used 

interfaces for transferring pixel data between image processing IP blocks. AXIS is a point-to-point 

unidirectional stream of data that uses a handshake mechanism. A valid signal indicates when the 

data on the data bus is valid, and a ready signal, provided by the receiver, indicates when it can 

process data. Data transfer occurs when both the receiver is ready, and the transmitted data is valid. 

AXIS also provides several additional optional signals that can be used for sharing sideband 

information. This includes the tUser and tLast signals. In image processing applications, tUser is 

typically used to indicate the start of a new image frame, while tLast is used to indicate the end of a 

line. 

With this information, image processing IP blocks can determine line lengths and identify the start of 

new frames. 

 

Figure 2 – AXI Stream Interface 

To increase throughput within programmable logic, it is possible to transfer several pixels per clock 

cycle. Typically, 1, 2, 4, or 8 pixels can be transferred per clock. However, when transferring multiple 

pixels per clock, care must be taken to ensure that all image processing blocks within the image 

processing chain support the chosen number of pixels per clock. 
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Figure 3 – AXI Stream Multiple Pixels Per Clock 

Within programmable logic, image processing chains typically use one of two commonly employed 

architectures: 

• Direct: There is minimal buffering from input to output, achieving the lowest latency. 

• Frame Buffered: The image processing chain contains a frame buffer. 

In a direct architecture, the input is connected directly to the processing stage and the output, with 

minimal buffering and no frame buffering. This approach provides the lowest latency between input 

and output, making it ideal for applications where latency is critical, such as autonomous vehicles or 

real-time video analysis. However, because there is no frame buffering, this architecture is less 

flexible for tasks requiring temporal data storage or synchronization. 

 

Figure 4 – Direct Pipeline 

A frame-buffered architecture leverages memory to buffer one or more frames. Typically, frame 

buffers are used when the image needs to be made available to processors for higher-level 

processing. Another use case for a frame-buffered approach is when there is a need to modify the 

output timing of the video stream, such as for synchronization or compatibility with other 

components. 

As such, frame-buffered architectures are common in applications where flexibility and timing 

adjustments outweigh latency concerns. However, frame-buffered solutions can still deliver low-

latency responses if optimized correctly. 
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Figure 5 – Frame buffer architecture  

7.1. Creating Image Processing IP 
Image processing IP can be sourced from various providers when developing image processing 

systems targeting AMD devices. 

 

• AMD Vivado Design Suite  

• AMD Vitis Vision Library 

• AMD Vitis Unified IDE  

• AMD Vitis Model Composer  

• Third-Party Tools e.g. MathWorks Simulink  

 

The Vivado Design Suite provides developers with the IP necessary for interfacing with sensors, 

cameras, and displays, such as MIPI and parallel interfaces. The Vivado Design Suite also offers a 

range of infrastructure IP, including frame buffers (read/write), VDMA, and other components for 

working with on-board DDR memories. Additionally, it provides IP blocks for basic configuration of 

the image processing chain, such as color space conversion, video mixing, test pattern generation, 

and gamma correction. 

 

Using the Vivado Design Suite, developers can create an image processing system that interfaces 

with their preferred camera, processes the image, and outputs the image or test pattern on the 

selected display. 
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Figure 6 – AMD Vivado Design Suite Image Processing IP Blocks 

More complex image processing functions can be implemented by leveraging higher-level design 

tools. 

The AMD Vitis Unified Software Platform provides developers with the ability to use C, C++, and 

OpenCL to create image processing algorithms. By developing in a higher-level language, verification 

time is reduced, allowing developers to focus directly on the algorithm. 

To support image processing algorithm development, AMD also provides the AMD Vitis Vision 

Libraries, which offer three levels of abstraction: 

• L1 – Primitives: HLS function definitions for image processing functions. 

• L2 – Kernels: OpenCL-callable functions built from the primitives. 

• L3 – Software APIs: Examples of image processing pipelines presented as software APIs. 

Within the L1 primitives, there are functions equivalent to OpenCV functions, designed specifically 

for implementation within programmable logic. Levels 2 and 3 are intended for accelerated flow 

applications leveraging the AMD Vitis Accelerated Flow. However, L1 cores can also be generated as 

standalone IP modules, which can be implemented within Vivado Design Suite tools. 

By using the AMD Vitis Vision Libraries, developers can easily incorporate commonly used OpenCV 

functions into image processing pipelines. 
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Figure 7 –AMD Vitis Vision Libraries 

Another approach to developing image processing IP is to leverage the functionality provided by 

Vitis Model Composer. Vitis Model Composer enables a model-based approach to image processing 

development using MathWorks Simulink and the AMD toolbox. 

This model-based approach allows developers to work at a higher level of abstraction, utilizing the 

capabilities provided by Simulink to create an image processing IP core. This IP core can then be 

seamlessly integrated into the image processing pipeline of Vivado Design Suite tools. 
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Figure 8 – AMD Vitis Model Composer Blocks 

Building upon the Simulink and Vitis Model Composer algorithm, developers can also leverage 

Simulink and its third-party toolboxes, such as the Computer Vision Toolbox, HDL Coder, and HDL 

Vision Toolbox, to create image processing IP cores.

 

Figure 9 – MathWorks Simulink image processing example 
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7.2. Sliding Window Filter 
When creating custom image processing IP, there are many different techniques that can be 

employed, such as edge detection, noise removal, and edge enhancement. 

One of the most commonly used techniques for implementing these filters is a sliding window filter, 

which slides an n × n matrix across the image and performs an operation on the center pixel. 

This means that if we are implementing a 3 × 3 sliding window filter, we need to buffer at least two 

full lines of the image to enable the filter to slide properly across the window. 

 

Figure 10 – Sliding window structure 

As the window slides over the pixels in the image, each pixel is typically multiplied by a 

predetermined weight. The new pixel value is then calculated by summing the results of the 

weighted pixels. 

 

 

Figure 11 – Pixel Weighting and value creation  
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8. Selecting the Appropriate Device 
Now that we understand the design challenges, the basic structure of many image processing filters, 
and how programmable logic, IP cores, model-based engineering works, we can now select the most 
appropriate device for implementing the image processing solution. 
 
There are a range of AMD FPGA and System-on-Chip (SoC) devices available to implement the most 
suitable image processing solution. Selecting the most appropriate device may initially seem 
challenging, as each project has unique requirements that could lead to one device over another. 
However, a simple selection process exists to help identify which device or devices might be best 
suited for the application. 
 
Within the AMD portfolio, the range of FPGA and SoC families includes: 
 

• AMD Spartan™ 7 Series FPGAs – Ideal for implementing image fusion systems that combine 
multiple sensors into a single stream. 
 

• AMD Artix™ 7 Series FPGAs – The most cost-effective entry to Serial Digital Interface-based 
solutions using transceivers. 
 

• AMD Zynq 7000 SoCs – The lowest-cost SoC, perfect for applications requiring software-
based processing and communication. These devices support the AMD PetaLinux framework 
for Linux-based image processing. 
 

• AMD Spartan UltraScale+™ FPGAs – High-performance devices with the largest I/O density, 
transceivers, hard memory controllers, and next-generation security. Hard memory 
controllers enable higher performance with support for DDR5, while UltraRAM simplifies on-
device buffering for low-latency image processing. 
 

• AMD Artix UltraScale+ FPGAs – Feature InFo packaging for the smallest board area, optimal 
thermal and power performance, and higher-performance transceivers for faster line rates. 
 

• AMD Zynq UltraScale+ MPSoC – Combines high-performance processing with 
programmable logic and provides the first entry point to AI/ML acceleration using the Vitis 
AI framework. 
 

• AMD Versal AI Edge Series Adaptive SoCs – Optimized for edge deployment and high-
performance image processing. These devices feature a network-on-chip and high-
performance interfaces to efficiently handle data transfer. AI/ML tiles within the Versal AI 
Edge adaptive SoC range enable accelerated AI or ML applications with high performance 
and low latency. 
 

• AMD Versal Adaptive SoCs – Designed for the highest-performance image processing and 
AI/ML applications. These SoCs excel in both traditional image processing and AI/ML 
workloads, leveraging AI/ML tiles, high-bandwidth memory, and a wide range of high-
performance interfaces. These devices can be used in chip-down designs or as part of a 
Versal Adaptive SoC on a preassembled AMD Alveo™ accelerator card for on-premises or 
data center deployments. 
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Device Selection Process 
To determine the starting point for device selection, the following considerations can help narrow 
the choices: 

1. AI/ML Requirements: 
If the solution requires AI/ML capabilities, select an SoC device, such as the Zynq UltraScale+ 
MPSoC, Versal AI Edge Series Adaptive SoC, or AMD Versal™ Adaptive SoCs. The exact device 
choice will depend on system requirements, including logic resources, power, performance, 
interfacing, and cost. 

2. Non-AI/ML Solutions: 
If the solution does not involve AI/ML, focus on the interfacing requirements to identify a 
suitable device family. The desired interfacing standard can help narrow down potential 
device families. 

o For gigabit serial links, the required line rate can guide selection among families like 
AMD Artix™ 7 FPGAs or UltraScale+ devices. 

o For MIPI interfaces, devices with native DPHY support in their I/O structures (e.g., 
the AMD UltraScale+™ device family) are recommended for line rates above 800 
Mbps. 

o For LVDS or other SelectIO standards, several device families can be considered 
depending on the application requirements. 
 

By identifying the appropriate device families based on interfacing and refining the selection based 
on exact system needs, developers can choose the most suitable AMD FPGA or SoC for their image 
processing solution. 
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Figure 12 – Device Selection Flow Chart  
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Once a potential family or group of families has been selected, the next step is to further narrow the 

selection based on the resources required. 

From the architectural design of the image processing pipeline and its stages, you will know the 

majority of the IP blocks needed. An estimation of the resources required can be determined by 

consulting the product guides for the identified IP in the image processing pipeline. If custom IP 

blocks are needed, resource estimates should also be performed. 

This resource estimation can be entered into the appropriate power estimation spreadsheet to 

provide an initial indication of power requirements. 

For example, consider an image processing pipeline that receives an HDMI video stream and displays 

it on an output screen, passing through the video without frame buffering. The pipeline may use the 

following IP blocks: 

• HDMI input/output interfaces 

• Video format conversion 

• Video stream synchronization 

The resource utilization would be similar to the example below, with the I/O standard requiring 

support for TMDS, which is supported in HR banks. 

IP Block Source FF LUTS DSP BRAM 

DVI2RGB Digilent 419 493 0 0 

Video In to 

AXI Stream  

AMD Vivado 

IP Library 

244 114 0 1 

AXIS Register 

Slice  

AMD Vivado 

IP Library 

57 19 0 0 

AXIS Fifo AMD Vivado 

IP Library 

113 96 0 3 

Video Timing 

Controller  

AMD Vivado 

IP Library 

3753 1970 0 0 

AXI4 Stream 

to Video Out  

AMD Vivado 

IP Library 

343 241 0 1 

RGB2DVI Digilent 142 159 0 0 

 

As such, this design can be implemented on any AMD device, particularly within the Cost-Optimized 

Portfolio for smaller devices. 
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Example Design 
For this example, we will create an image processing pipeline using the direct method. 

This approach eliminates frame buffering from input to output, ensuring minimal latency between 

the input frame and the output frame. To achieve this, buffering must be minimized throughout the 

pipeline. 

Target Device 

The target device for this design is an AMD Kintex™ 7 FPGA, specifically using the Digilent Genesys 2 

development board, which features: 

• HDMI input and output interfaces: Ideal for capturing images from a sports camera or test 

equipment and displaying them on a screen. 

This device was selected as it enables significant resources for growth and testing of image 

processing algorithms. 

The design will utilize Vivado Design Suite tools and can be divided into two key sections: 

• Image processing pipeline 

• Control and configuration using AMD MicroBlaze™ V processors 

Pipeline Design 

The pipeline will: 

• Receive data over HDMI: Converting it from a parallel video format with vertical and 

horizontal sync signals, to an AXI Stream. 

• Convert the video stream to AXI Stream: AXI Stream is the standard interface used by most 

image processing blocks. 

• Output data via AXI Stream to video out: This generates parallel video under the control of a 

Video Timing Generator. 

Control Using the AMD MicroBlaze™ V Processor 

The pipeline and the associated Video Timing Generator will be controlled by the MicroBlaze V 

processor, which is based on the RISC-V Instruction Set Architecture. 

• Unlike previous examples that used VDMA (Video Direct Memory Access), this application 

will not use VDMA to ensure the lowest latency between input and output. 

• The Digilent Genesys 2 board with 1GB of DDR3 is selected to support optional image 

buffering if needed by certain algorithms. 
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AMD Vivado™ Design Suite Components 

The image processing pipeline will use the following IP cores: 

• DVI2RGB: Digilent IP core for converting DVI to RGB format. 

• Video In to AXI Stream: Vivado Design Suite IP block for converting RGB video to AXI Stream 

format. 

• AXI Stream to Video Out: Vivado Design Suite IP block for converting AXI Stream back to RGB 

format. 

• Video Timing Controller: Configured to detect incoming timing and generate output timing. 

This configuration will also support future VDMA applications if required. 

• AXI Stream FIFO: Configured in packet mode to buffer a line before passing it through. 

• AXIS Register Slices: Added within the pipeline to aid with timing closure. 

AMD MicroBlaze™ V Processor Subsystem 

The MicroBlaze V processor controller subsystem is configured as a microcontroller. This 

configuration enables both AXI peripheral data and instruction interfaces, connected via an AXI 

Interconnect to: 

• UartLite: Vivado Design Suite IP block for UART console communication. 

• AXI GPIO: Monitors display and camera hot plug detect signals. 

• MIG 7 Series: Vivado IP block for interfacing with the DDR3 memory on the Digilent Genesys 

2 board. 

• Processor Reset Block: Manages system resets. 

• AXI Interrupt Controller: Handles processor interrupts. 

• AMD MicroBlaze™ V Processor Debug Module: Enables debugging using the AMD Vitis™ 

platform. 

Clocking Configuration 

• The Memory Interface Generator (MIG) is provided with the board differential clock running 

at 200 MHz. 

• The MIG generates a UI clock at 100 MHz, reflecting the 4:1 clocking scheme used. 

• An additional UI clock at 200 MHz is generated as a reference clock for the RGB2DVI module. 

For this design, the output is configured for 720P resolution, as provided by the sports camera. The 

AXI Stream clock will run at 150 MHz, which is twice the pixel clock frequency. 
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Figure 13 –AMD Vivado Design  
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Figure 14 – Image processing pipeline  
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The device utilization can be seen below: 

 

Figure 15 – Utilization of the resources 

The resulting image:  

 

Figure 16 – Output Image 
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9. Wrap Up  
FPGA and System-on-Chip (SoC) devices are ideal for implementing image processing pipelines. Their 

parallel nature enables the creation of low-latency, responsive pipelines required by many 

applications. 

Within the AMD ecosystem, the development of image processing pipelines is accelerated by the 

extensive range of IP supported across multiple development tools. This broad availability of IP 

significantly reduces development time, allowing developers to focus on value-added activities. 

AMD, and the AMD Arrow logo, Alveo, Artix, Kintex, MicroBlaze, Spartan, UltraScale+, Versal, Vitis, 

Vivado, Zynq and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other 

product names used in this publication are for identification purposes only and may be trademarks 

of their respective companies. 

 

 

 

 

 


